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Abstract-A regular perturbation approach is applied to take into account variable property effects. Of 
special interest is the effect of the pressure-dependent density. In the framework of an asymptotic theory, 
compressibility effects are considered as variable property effects. By means of this asymptotic theory the 
deviation of skin friction and heat transfer results from their incompressible, isothermal values are 
determined for laminar Falkner-Skan boundary layers. As far as laminar flow is concerned there is no need 

for any empirical information. 

1. INTRODUCTION 

IN THE theory of compressible boundary layers one 
should accommodate several complications not 
present in the incompressible case: density should be 
considered as a new variable that is pressure and 
temperature dependent. An equation of state is needed 
to relate thermodynamic properties. Momentum and 
energy equations are coupled and nonlinear. Since 
viscous heating may result in considerable 

temperature gradients the temperature dependence of 
transport and thermodynamic properties must be 
taken into account. All these are far from trivial 
matters, and hence there are very few exact solutions 

for compressible viscous flows, see White [l] for a 
survey of solutions including compressibility effects. 

As far as boundary-layer flow is concerned the 
purely numerical approach is straightforward taking 
into account the dependence on pressure and 
temperature of all physical properties involved in the 

problem. The more analytical approach by so-called 
compressibility transformations is, for practical 
purposes, restricted to a narrow class of flows 
exhibiting some kind of self similarity. The basic 
objective of these transformations is to derive a set of 
functions which relate a given compressible flow to a 
corresponding incompressible flow; see, for example, 
Stewartson [2]. In other words this method aims at 
converting a variable property flow to a constant 
property flow. 

In contrast to this, the basic idea behind the present 
study is to account for variable property effects, i.e. 
compressibility effects, by a regular perturbation 
procedure as described, for example, by Van Dyke [3]. 
The zero-order solution of this asymptotic approach is 
the constant property incompressible flow. The linear 
terms of a subsequent perturbation procedure can 
cover compressibility effects to an extent that makes 
an extension to higher-order terms unnecessary for 
many practical applications. 

The asymptotic approach to account for 
compressibility effects is by no means restricted to 

laminar flow. Nevertheless for turbulent flows its 
application is complicated considerably by the need 
for turbulence modelling which itself is affected by 
variable property effects. That is why only laminar 
boundary-layer flow is considered in this study. The 
basic ideas underlying its possible extension to 
turbulent flows are given in ref. [4]. 

Within the theory of laminar boundary layers, self- 

similar solutions are often taken as a starting point for 
a more general investigation. Besides the fact that they 

are of practical importance by themselves, like flat 
plate and stagnation point flow they are often used as a 

basis for general methods of calculation like integral 
methods; see, for example, Walz [S]. In the 

incompressible limit self-similar flows like the well- 
known Falkner-Skan (wedge-type outer flow) 
similarity solutions have a clear physical inter- 
pretation. The momentum equation decoupled from 
thermal effects in the incompressible limit after a 
transformation of the normal coordinate is dependent 

on one similarity coordinate only. If compl’essibility 
and thermal effects are now taken inty account an 

additional transformation of the streamwise 
coordinate is necessary. As a consequence of this the 
connection to the inviscid outer flow, given in the 
original streamwise coordinate, is complicated 
considerably. 

This difficulty can be circumvented by the 
asymptotic approach applied in this study. The 
dependence on the streamwise coordinate of 
compressibility and other variable property effects, 
which will depend on the thermal boundary 
conditions, can be taken into account by appropriate 
streamwise-dependent factors in the perturbation 
terms without need for a streamwise coordinate 
transformation. 

As mentioned earlier, considerable temperature 
gradients may result from viscous heating. As a 
consequence the temperature dependence of all 
physical properties involved in a problem should be 
taken into account. Therefore, it is reasonable to treat 
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NOMENCLATURE 

a velocity of sound Greek symbols 
B constant, equation (6) physical property 

cr skin friction coefficient ; wedge angle, Fig. 1 

CP 
specific heat at constant pressure Y ratio of heat capacities 

e exponent: e = 0 for T, = const; E heat transfer parameter, equation (2) 
e = (1 -m)/2 for q, = const E high speed parameter, equation (la) 

EC Pckert number, t@/c,*T* vi viscosity 
f dimensionless streamfunction similarity variable, equation (7) 
h enthalpy Is dimensionless tem~rature 
H total enthalpy A thermal conductivity 

K property of the fluid, equation (5) $ streamfunction 

R, property of the density, equation (4b) p density 
L reference length r shear stress. 
m exponent, equation (6) 

m, exponent, equation (19) 
Ma Mach number, u,*/a* 

p pressure 
P pressure coefficient, equation (4a) Subscripts 
Pr Prandtl number, y~*c,*/L* tl associated with the property cl(p,q,. . .) 

4 heat flux aw adiabatic wall 
r recovery factor, equation (25) cP constant property 
Re Reynolds number, p*u,*E/q* e outer edge of the bounda~ 
T temperature W wall 

T, reference temperature 0 reference condition 
ll velocity I associated with heat transfer effects 

X,Y coordinates. II associated with high speed effects. 
--~ -.--. .---- ~ -______ 

the problem by a double perturbation procedure with 
one perturbation parameter for high speed 
(compressibility) effects and one for heat transfer 
effects. 

The influence of the heat transfer parameter alone 
has been investigated in the past in several studies; see, 
for example Carey and Mollendorf [6] for natural 
convection flows, and an extensive study by the 
present author [7]. 

The extension to compressible flows is the main 
object of this study. The procedure is demonstrated for 
laminar Falkner-Skan-like boundary layers. 

2. PERTURBATION PARAMETERS 

Since physical properties are pressure and 
temperature dependent, two ~rturbation parameters 
are necessary to cover all variable property effects by a 
perturbation procedure. 

One (small) perturbation parameter, from now on 
called the ‘high speed parameter’ is 

*2 
43 E=------. 

$0 T? 
(14 

Starred quantities are dimensional throughout this 
study, the subscript ‘0’ refers to a reference state fixed 
later. This parameter 5 is the well-known Eckert 
number EC, an important parameter in connection 

with viscous heating and pressure work. For perfect 
gases it is related to the Mach number through 

E = EC, = (y- l)Ma,Z. (lb) 

The other (small) pe~urbation parameter, called the 
‘heat tran.$r parameter’ is 

T$-T,* 
E = ~ for T, = const 

T,* 
(24 

C=C,g for qw = const. (2b) 
0 0 

In equation (2b) a constant C, is introduced for 
convenience with C, = [Re,(m+ 1)/2]-1’2, for m see 
equation (6) below. 

3. EXPANSION OF PHYSICAL PROPERTIES 

The zero-order solution is the low speed 
(incompressible) flow with vanishing heat transfer, i.e. 
the constant property flow. Small deviations from this 
flow are given by the linear perturbation terms in E and 
E. As far as the physical properties are concerned this is 
to take into account the linear terms of a Taylor series 
expansion at the reference state T,, p,. For the density 
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it reads: 

&T 
Pt 

= ~+EK~~,+E(K~~,,+R,P)+O(~‘,EE,E~) (3) 

with 

T E (T* - T$)/Tb = T, + T,, = Et+ +E&, 

P = (p* -p,g/p*l@ 
(4a) 

and 

K, = ($$$; R, = (c;T*$jo (4b) 

being dimensionless properties of the fluid. The 
dimensionless temperature T is split into two parts: 
IT; = ~0, covering direct heat transfer effects; and 
T,, = EB,, associated with the high speed parameter E 
covering compressibility effects like viscous heating. 
According to the two definitions of E, equations (2a) 
and (2b), the temperature 8, is nondimensionalized by 
0i = (T,* - K*)/(T,* - K*) for T, = const and t?i = 
(?;* - c*)/(C,q,*L*/I,*) for q, = const. 

The nondimensional pressure is P= 

(P* - P31P*u,*2 as usually introduced in low speed 
flows. 

If all properties involved in the problem are now 
expanded according to equation (3) dimensionless K- 
numbers like K,, R,, K,, . . . appear. But since the 
pressure dependencies of the viscosity rl, the thermal 
conductivity i and the specific heat capacity cp are 
extremely small they are neglected throughout this 
study. It would be no problem at all to take them into 
account. The only reason for neglecting all effects in 
connection with K,, K, and K, is that they are of no 
practical interest. The series expansion for a general 
property tl (CI L q, 1, cp) thus is: 

c( = 1+&K,e,+iKK,e,,+0(&2,&E,E2) 

T* au* 

( ) 

(5) 

K,= a*w ’ 
0 

If physical properties appear in a fixed combination 
like pq they are treated like one single property with 
K,, = K, f K,. 

4. BASIC EQUATIONS AND 
SOLUTION PROCEDURE 

In this study the laminar boundary layer over a 
wedge will be considered. The outer flow is given by 
(e G outer edge): 

n* = B*x*” e (6) 

with the exponent m related to the wedge angle B by 
m = /I/(2-@, see Fig. 1. 

Prior to writing down the basic equations the 
reference quantities must be fixed. Though self-similar 
flows have no characteristic geometrical length the 
equations are (formally) nondimensionalized by a 
length L?. Temperature and pressure are referred to 
their stagnation quantities To* and p,*, the 
characteristic values for compressible flows. But 

instead of choosing dw as the reference velocity 
a characteristic quantity of the wedge-type outer flow 
is preferred. The reference velocity u,* is the outer flow 
at a distance L? from x* = 0 so that u, = xm and the 
quantity B* drops out of the problem, see 
equation (6). 

With the similarity variable nS 

,,=~x(m-1)12~;pdg (7) 

the dimensionless streamfunction f(x, r~,) 

(8) 

and the dimensionless variables according to Table 1, 
the basic equations read: 

CPtf”l’+ff”+BCP,lP-f’21 

The associated boundary conditions are: 

FIG. 1. Wedge-type outer flow. 
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Table 1. Dimensionless quantities 

x u v h H 

X* 

L* 
u* 
4 

h*-h.? H*-HX 

c; To* $0 Tb 

4, = 0: f = f’ = 0; H = H, for T, = const 

H' = Hk for qw = const 
(lla) 

~,--+sc. f’-l=H=O. (lib) 

The energy equation is written in terms of the total 
enthalpy H(x, r/J = h + Eu2/2. H* = H,* is constant in 
the inviscid outer flow so that the boundary condition 
is H = 0 for qS -+ CE. In the following H will be split 

into two parts, H, and H,,, according to 0, and 0,, [see 
equation (4a)]. 

Equations (9) and (10) are a set of nonlinear coupled 
partial differential equations. If the physical properties 
are replaced by the Taylor series expansions, 
equations (3) and (5) there are all together nine 

parameters in the equations, namely: E, E, K,, R,, K,,, 

K,*, K,, Pr, m. By an appropriate ansatz for the 
dependent variables the number of parameters for the 
solution procedure can be reduced drastically. With 

the following ansatz seven parameters are separated 
and only m [velocity exponent, see equation (6)] and 
Pr (Prandtl number) are left over: 

f = fo+ex’CKp,fi,, +Kpfml 

+~~~“CK,,1;,,,+K~fi,,2+~pfil 

+ 0(E2, EE, E2) (12) 

H, = x'H,, 

+EX~~CK,,HI,, +K,H,,z+K,,H,,,+K,H,,,l 

+ O(E2) (13) 

H,, = x~"'H,,,,+Ex~+~"' CKp,,Hm +W',,,~+K,AH,,,X 

+K,HI,,, +K,HmI 

+EX4mCKpSH1,,5+KpH,,,6+KplH1~,, 

+Wf,,,, +f$H,,,zI 

+0(&Z, EE, E2). (14) 

The exponent e is introduced to distinguish between 
the two kinds of thermal boundary conditions, namely 
e = 0 for T, = const and e = (1 - m)/2 for qw = const. 
This parameter e may be looked upon as the 10th 
parameter of the problem [or the third parameter of 
the solution procedure with equations (12H 14)]. 

In equations (12H 14) all functions J, H,i and H,,i 
depend on ‘1, alone, i.e. they are solutions of ordinary 
differential equations, typical for self-similar solutions. 
Since J H, and H,, include powers of x they are called 
‘quasi-self-similar’. The complete set of 22 ordinary 
differential equations for A, H,i and H,,i is derived in 
ref. [4]. They are also listed in the Appendix. 

It should be emphasized that the original equations 
(9) and (10) were partial, coupled and nonlinear but 

that the equations for fi, H,i and H,,i are ordinary, 
uncoupled (in the sense that they can be solved 
sequentially) and linear (except for the equation for the 
zero-order streamfunction). 

In addition to equations (9)( 14) and the property 
expansions equations (3) and (5) a relation between 
total enthalpy and temperature is required to close the 
set of equations. This relation can be expressed 

asymptotically, i.e. to the zero and first order, 
respectively, taking into account that H = h + Eu2/2 

and dh = cp dT+ [p-’ - T(&-'/aT),] dp; see, for 
example, Baehr [S]. But since the term expressing the 

pressure dependence of the enthalpy h is extremely 
small compared to the term c,dT it is neglected 
throughout this study. It is the second non-asymptotic 
approximation in this study. Again, like neglecting the 

pressure dependence of n, 1 and cp, the motivation for 
this approximation is that it is of no practical interest 
to keep it asymptotically complete, although this 
could be done. As far as a perfect gas is concerned it is 

no approximation at all since p-l - T(&-'/dT) = 0 
and dh = c,dT is exact. Inserting the asymptotic 
expansions for all variables one obtains simple 

relations between Hi,, Hi,, and Bi,, oil,, respectively. 
The zero-order relations are: 

tl,, = H,, and O,,, = Ho,, -for'/:!. (15) 

The first-order relations are listed in the Appendix. 

The numerical solution of the equations for A, Hi, and 
Hi,, is straightforward. In Table 2 results are given for 
certain values of the parameters m and Pr (which may 
be used for interpolation if different values are needed) 
for the thermal boundary conditions T, = const and 

q, = const. 

5. SKIN FRICTION AND HEAT TRANSFER 
RESULTS 

The skin friction under the influence of variable 
properties related to its constant property value is: 

+KpfA;2 I +q 

0 0 w 

+0(&Z, EE, 2). (16) 
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Table 2(a). Numerical results; T, = const 

Wl= 0.0 l/3 213 1.0 

Pr = 0.7 7.0 0.7 7.0 0.7 7.0 0.7 7.0 

0.4696 0.4696 
-0.4139 -0.9135 
-0.0340 0.6975 
-0.3447 -0.4155 

-0.0370 -0.0326 

0.1174 0.1174 
0.06 12 0.1859 

0.2496 0.5449 
-0.0427 -0.088 1 

0.0512 -0.0010 

-0.0140 -0.6673 
0.0480 - 0.0302 

-0.0153 -0.1374 

0.0202 0.0259 
-0.0202 -0.0259 
-0.1035 -0.2284 
-0.0085 0.1744 

0.9277 0.9277 1.1203 1.1203 1.2326 1.2326 
-0.4705 - 1.0930 -0.4873 - 1.1491 -0.4959 - 1.1784 
-0.0548 1.1597 - 0.0643 1.3684 -0.0700 1.492 1 
-0.5884 -0.7958 -0.6897 -0.8034 -0.7484 -0.8907 
-0.3472 -0.2737 -0.4875 -0.2957 -0.5691 -0.3515 
-0.0564 -0.0294 -0.0648 -0.0299 -0.0699 - 0.0305 
-0.1673 -0.1800 -0.2207 -0.2394 -0.2502 -0.2724 

0.2095 0.2095 0.2523 0.2523 0.2775 0.2775 
0.0537 0.1837 0.05 13 0.1831 0.0501 0.1825 
0.0353 0.0503 0.0437 0.0643 0.0476 0.07 16 
0.2896 0.6590 0.3018 0.6950 0.3080 0.7138 

-0.0544 -0.1125 -0.0581 -0.1204 -0.0601 -0.1246 
0.0989 0.0961 0.1221 0.1572 0.1361 0.1974 
0.033 1 -0.0801 0.0444 -0.1563 0.0510 -0.2101 
0.0028 - 1.1282 0.0061 - 1.3401 -0.0 124 - 1.4668 
0.0520 -0.03 15 0.0582 -0.0283 0.0824 -0.0233 

-0.0233 -0.1724 -0.0267 -0.1888 -0.0287 -0.1992 
0.0061 -0.1759 0.0085 -0.2428 0.0098 -0.2804 
0.0311 0.0301 0.0357 0.0321 0.0384 0.0335 

-0.0311 -0.0301 -0.0357 -0.0321 -0.0384 -0.0335 
-0.0850 -0.2031 -0.0781 -0.1933 -0.0746 -0.1882 
-0.0117 0.2501 -0.0135 0.2915 -0.0147 0.3 167 

Table 2(b). Numerical results; qw = const 

m= 0.0 

Pr = 0.7 7.0 

f 01 0.4969 1.742 1 0.4969 0.7984 
$r -0.0821 -0.5619 -0.3253 0.7636 

-0.0086 -0.3499 

pl* 

111 
e 112 
e 113 
e 114 
e 1111 
e 1112 
e 1113 
e 1114 
e 1115 
e 1116 
e 1117 
e _111a 
e -1111 
e 1112 

0.1174 0.1174 
0.4074 0.1230 

-0.1810 -0.2502 
-0.3365 -0.0685 

0.1236 0.2346 

0.0477 -0.4507 
0.0953 -0.1590 

-0.0460 -0.0325 

0.0500 -0.1817 
-0.0534 -0.1098 

0.4355 0.1996 
0.0 0.0 

l/3 

0.7 7.0 

213 1.0 

0.7 7.0 0.7 7.0 

0.9277 0.9277 1.1203 1.1203 1.2326 1.2326 
1.7208 0.7505 1.8577 0.7933 2.0167 0.8486 

-0.0822 0.765 1 -0.0822 0.765 1 -0.0822 0.7652 
- 1.0170 -0.5372 - 1.2877 -0.6589 - 1.5093 -0.7559 
-0.5294 -0.1359 -0.8636 -0.2232 - 1.1476 -0.2983 
-0.0077 -0.5820 -0.0069 -0.6865 -0.0065 -0.7484 
-0.1442 -0.3069 -0.1900 -0.4113 -0.2153 -0.4694 

0.2095 0.2095 0.2523 0.2523 0.2775 0.2775 
0.3412 0.0935 0.3684 0.0999 0.4106 0.1116 
0.1927 0.0227 0.2912 0.0332 0.3907 0.0438 

- 1.1253 -0.2198 - 1.3060 -0.2465 - 1.5405 -0.2839 
-0.3553 -0.0618 -0.4195 -0.0682 -0.4930 -0.0762 

0.1947 0.2242 0.2440 0.2518 0.2877 0.2820 
0.0669 0.0233 0.0812 -0.0002 0.0933 -0.0239 

-0.0076 -0.4273 -0.0425 -0.4520 -0.0728 -0.4883 
0.1498 -0.1469 0.1952 -0..1550 0.2386 -0.1610 

-0.0384 0.0276 -0.0369 0.0380 -0.0363 0.0422 
0.0041 -0.0859 0.0048 -0.1015 0.0051 -0.1081 
0.0414 -0.1893 0.0397 -0.1907 0.0390 -0.1913 

-0.0448 -0.1034 -0.0431 -0.1020 -0.0424 -0.1015 
0.4030 0.1764 0.4029 0.1733 0.4103 0.1744 
0.0 0.0 0.0 -0.0001 0.0 - 0.0001 

- 

The heat transfer results are: 

For T, = const in terms of 4,: 

[ 

-l/2 

-4w R;b(m+ l)xm-I 1 
= (pl), T; = &Xee;Iw + ~x2me~IIw 

+E~x~‘[K~~O’~~~ +K,0’,12 

+~,,~8b1~~1+~;1,)+~,8;1,1, 

+EEX~+~“‘[K,,@~~,~ +K,8;,,, 

+K,,(B~II~,I+~;II~)+K~~;II~ 

+ &cei III -%%)I w 

+~2~4mC&,B;II~ +K,GI6 +K,,%, 

+~,~;11,+~,~~,,2-f~~,,)1~ 

+O(E3,E2E,&E2,E3). (17) 
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For q\. = const in terms of T,: 

T, = &XY& +ix2me u o,,w 

+E2XZe[&,~,,, fK,e,,,+K,ie,,,+K,e,,,i, 

+~~~e+2mwp~ellll +&A,,2+~,~~,,,3 

f&Q,,,, +K,4,,,1, 

+~2~4mC&,Q,,,, +&A,,, f&4,,, 

f&4,,, +f$f4,,21w 

+ O(E3, &2E, &E2, E3). (18) 

The leading terms in equations (17) and (18) 
expressing the constant property results, are of order E 
and E, respectively. Since the heat transfer quantities q, 
and T, are one order of magnitude smaller than the 
momentum transfer quantity c, constant property 

results are not those with E = E = 0 (then T, = qW = 0) 
but E + 0 and E + 0. That is why temperature results 
for the thermal boundary condition T, = const are 
usually nondimensionalized by TW* - To* = &To*, a 
quantity of order O(E), leading to Q, = (T,* - z*)/ 
(T,* - T,*) of order 0( 1). 

6. EMPIRICAL METHODS IN THE LIGHT OF 
THE ASYMPTOTIC RESULTS 

Since compressible flow is treated like a variable 
property flow in this study, the question arises if 

empirical methods-well established in the field of 
variable property flows-are also applicable to 
compressible flows. There are two well-known 
empirical methods for variable property effects. 

In the property ratio method the constant property 
results are multiplied by a power of some pertinent 

property evaluated at the surface temperature to that 
property at the reference temperature q*. 

A complete formula for the skin friction for example 
reads : 

ci ~ = pp./;.!; mp = const, m, = const. (19) 
Cfcp 

In the reference temperature method a temperature IT;* 
is specified at which the properties appearing in the 

dimensionless groups of the problem should be 
evaluated to obtain the variable property results by 
constant property formulae. 

By means of the linear asymptotic theory the 
unknowns in both methods (the exponents m,,, m, and 
the reference temperature, respectively) can be derived 
analytically, for details of the procedure, see ref. [7]. 

So a first statement is that it is a characteristic 
feature of these formulae that higher-order (nonlinear) 
effects cannot be taken into account, they are linear 
methods by nature. 

The second statement concerns the applicability to 
compressible flow. In the general case there are two 
independent effects of variable density. One is related 
to dp*/dT* and one to iITp*/dp*. As long as both effects 
are in a problem they cannot be covered by one 

exponent or one reference temperature. As a 
consequence property ratio and reference methods are 
applicable only in cases where there is no effect of 

dp*/dp*, i.e. for the flat plate and stagnation point 
flow. An extension to general wedge type flows is not 
possible. 

Flat plate flow 
Applying the property ratio concept the correction 

formula for skin friction for example is (since p and VI 
appear in a fixed combination only they can be treated 
like one property): 

= 1-t mp,,Kp&Y’eolw +ie,,,,) + O(E’, EE, E2). (20) 

Comparing equations (20) and (16) for T, = const 
leads to the following expressions for the exponent mp,, 
(0,,, = 1; eollw = 0, e = 0): 

E 
m P9 = mpvl +- mpv2 (21) 

E 

with 

f” - 
mPv2 = F+S (f;;-$,~;. 

ow Pl 

The first part, mPsl, is the exponent for incompressible 

(low speed) flow, mp,,2 is the deviation caused by 
viscous heating, the only high speed effect for a flat 
plate flow. The expression for mp,,2 is simplified when 
the free-stream quantities T,*,p,* instead of the 
stagnation values T$, p,* are taken as reference state. 
Then mp,,2 is free of K-numbers and both parts, mp,,, 

and mp92 are functions of the Prandtl number only, 

since At depend on Pr. For the special case of the flat 
plate with free-stream reference conditions their 
numerical values are given in ref. [7] or can be 
extracted from Table 2(a) by taking into account the 
change in the reference state properly. 

From these considerations it is concluded that the 
free-stream values are the adequate reference state for 

the flat plate flow rather than stagnation values which 
nevertheless are used in general for uniqueness. 

Applying the reference temperature concept, T,* may 
be written as 

T* 
L = a, +a,Ma: +a, T,* 
T,* T,* 

(perfect gas). (22) 

In this form the reference temperature can be 
compared to empirical results listed in ref. [l]. The 
range of empirical data for Pr = 0.7 is: 

a, = 0.420.55 (exact: a, = 0.468) 

a, = 0.032-0.039 (exact: a, = 0.03 1) 

a3 = 0.450.58 (exact: a3 = 0.532). 

The numbers of the linear asymptotic theory are listed 
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in parentheses so that ‘exact’ precisely means ‘exact 
within the linear theory’-but that is all that can be 
covered by the reference temperature as was 
mentioned before. 

Stagnation point flow 
For the stagnation point the general results, 

equations (16t( 18) reduce drastically. With e = 0, 
x = 0 the only higher-order terms that are left over are 
those of order O(E). No high speed effect expressed by E 
and KP is left since it is a low speed flow by nature. The 
only variable property effects are those of heat 
transfer, the correction formulae are those of low 
speed stagnation point flow with heat transfer. The 
skin friction formula after the property ratio method 
for example is: 

= l+m,,~K,,8,,fm,~K~B,,+O(~~). 

Comparison with equation (16) yields: 

(23) 

S” f ” 
mP0 = 1+e; m,=e. (24) 

In contrast to equation (20) an additional factor p,“p 
should be introduced for a complete correction 
formula since p does not always appear in the fixed 
combination pq as in the flat plate flow. In equation 
(24) either the numerical values from Table 2(a) 
(T, = const, boundary condition Burw = 1) or those 
from Table 2(b) can be inserted since for stagnation 
point flow q, = const implies T, = const and vice 
versa. 

By virtue of the so-called Mangler transformation, 
see ref. [l], the solution for m = l/3 (B = l/2) 
corresponds to the axisymmetric stagnation point 
flow. The only formal difference is that the RHS of 

equation (7) is multiplied by 3 in the case of 
axisymmetric flow with the consequence that in 
equation (17) the RHS must be multiplied by the same 

factor 3. 

7. EXACT SOLUTIONS AND 
ASYMPTOTIC RESULTS 

The deviations of the linear asymptotic results from 
those that take into account the variable properties 
completely are of order O(E’, EE, E2) asymptotically. 
But for practical purposes the linear theory is a good 
approximation, even for values of E and E not very 
close to zero, as will be demonstrated by the following 
examples. 

Zero pressure gradient 
In Fig. 2 the exact solution for skin friction of a 

perfect gas by Van Driest [9] is compared to the linear 
theory of this study. Figure 2 shows a good 
coincidence up to high speed parameters E of about 10 

HIGH SPEED PARAMETER z 
“8 I 
12 3 4 5 6 7 

MACH NUMBER Ma,, 

FIG. 2. Flat plate flow: T, = const; Pr = 0.75; Sutherland 
law. --- Van Driest [9]; __ linear theory. 

and heat transfer parameters of about one. In the light 
of an asymptotic theory for (E, E) + 0 this result is quite 
amazing. But one should keep in mind that the only 
high speed effect is viscous heating and that the 
temperature effects on p and q mostly compensate 
each other. Both properties appear only in the fixed 
combination pq, no term with p alone appears for 
p = 0 (flat plate) as can be seen in equation (9). The 
compensation to the first order between p and 4 is 
expressed by a small value for K,,. In the example of 
Fig. 2 it is K,, = K,+K, = - 1+0.788 = -0.212. 

An interesting feature of adiabatic flow is the 
adiabatic wall temperature T,z and the recovery factor 
r defined by 

(25) 

For the adiabatic case q, is zero, i.e. E = 0. The 
dimensionless temperature EB,, is then (T,: - T,*)/T,* 
so that the recovery factor reads (u: = u,* for the flat 
plate): 

= (1+2%,,)+2E Kp,~m+KplOl,,, 

(il,,,-~-~)+Kp7),,,~]+O(E’). (26) 

For Pr = 1 for example, with the numerical values 
from Table 2(b), the well-known result r = 1 follows 
which even holds for compressible flow as far as the 
zero-order results are concerned. The first-order 
deviations from this constant are weak since all O1,,i 
are small numbers in the vicinity of Pr = 1 as can be 
seen in Table 2(b). 

Non-zero pressure gradient 
For the special case of a perfect gas with the 

Sutherland viscosity law and for Pr = 1, Cohen and 
Reshotko [lo] treated the problem by a 
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FIG. 3(a). Falkner-Skan: m = l/3; T, = const; Pr = 1.0; 
x = 1.0. 00 Cohen and Reshotko [lo]; __ linear theory. 
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0.0 0.2 0.L 0.6 0.8 F 1.0 

FIG. 3(b). Falkner-Skan: M = 2/3; T, = const; Pr = 1.0; 
x = 1.0. 00 Cohen and Reshotko [lo]; __ linear theory. 

compressibility transformation technique described in 

the introduction of this study. They solved the 
problem for an external velocity CJ, = CX” and a heat 
transfer parameter similar to E, see equation (2). The 

quantities U, and X are transformed variables with the 
consequence that the prescribed external flow in 
original physical variables is of power law type only 
for Ma = 0. The Mach number dependence of the 
problem is hidden in the transformation and not 
explicit as in the asymptotic approach. 

To compare the results from ref. [lo] with the 
power law external velocity results of this study, a 

local correspondence between the power ti from ref. 
[lo] and m according to equation (6) is assumed. This 
again is a non-asymptotic approximation which is 
necessary to compare the results of the two theories. 
For the two cases, m = l/3 and m = 213 and a fixed 
location x = 1 (all other values are possible), the two 
theories are compared in Figs. 3(a) and (b). There is a 
satisfactory coincidence for rather large values of the 
heat transfer parameter E as well as for the high speed 
parameter E. 

8. DISCUSSION 

There are three important features of the asymptotic 

approach tn compressible flow that should be 
emphasized : 

(1) 

(2) 

(3) 

The typical advantage of a perturbation technique 
holds: the results are general in the sense that a 
specification to certain flow cases is made in the 
results only (by specifying E,E and the fluid 

through K,, K,, . .). 
An additional advantage is that the influence of 
the physical properties can be checked separately. 
This statement applies especially to ‘compressi- 
bility effects’ (associated with E and KP, 
respectively) in contrast to the alternative method 
of hiding it in compressibility transformations. 

As far as laminar flow is concerned all information 
is extracted from the basic equations. Based on 
these results well-known empirical methods to 
account for variable property effects can be 
understood as theoretical methods (see Section 6). 

Finally the question may be answered that really 
was the starting point for this study: what is a 
compressible flow? 

The most general answer is: a flow with non- 

constant density, i.e. variations either through ap/ap 
or ap/aT are involved in the problem. Due to this 
definition the flat plate flow at Ma # 0 and stagnation 
point flow with heat transfer are compressible flows 
since variations in density are present through dp/dT. 
The same argument holds for every flow with Ma = 0 
but non-zero heat transfer. It is suggested that this 
definition of compressibility be called compressibility 
in a general sense. 

A more restrictive answer is: a flow with non- 

constant density through the effect of Sp/dp. A 
necessary condition for this is high speed, i.e. Ma # 0. 
This definition may be called compressibility in an 
aerodynamic sense, since it is typical for aerodynamic 
high speed flow situations. But it should be kept in 
mind that high speed is necessary but not sufficient. 

The boundary layer at a flat plate, even at supersonic 
Mach numbers, is incompressible in that sense since 
the pressure is constant in this case and variations in 
density occur through ~?p/aT (viscous heating) only. 
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APPENDIX 

After inserting equations (12t( 14) and the property 
expansions into the basic equations (9) and (10) two sets of 
ordinary differential equations are obtained which are the 
zero- and first-order equations with respect to E and E, 
respectively. 

For convenience the following differential operators are 
introduced : 

L*(f) = f"'+f,f"-4Kf'+(V+ l)fif 642) 
I, 

L3(f,H)=~+fH-~Ib.H-~ffH~, 
0 

+ 

I, 

LJf,H) = ;+f,‘H’+f;H-2fif’H,,, 
0 

(A3) 

+W+l)fHb,,- &-I 
( ) 

(flf,')" 

L~l1:8.xI=~+lo"'-~~+~)~H-2~f~H~, 

-$+?H,,+ $++I fHb,, 
( ) 

(f’fo’)“. (W 

With L,-L, the momentum and energy equations are: 

zero order with respect to E and E: 

f,“‘+fofd’+8(1-.~2) = 0 (A6) 

~+@f&$+HO, = 0 (A7) 
0 

~+f,H;ll-2/?~H,,,, = (ff,“) (A8) 
0 

with the associated boundary conditions [(a): T, = const, 
(p) : qw = const] : 

qs=O: fo=/b’=O;(a):H,,-l=H,,,=O; 

(8): Hbl + 1 = Hbl, = 0 
(A9) 

t/,-+co: fi-1=H,,=H,,,=O (AlO) 

first order with respect to E and E: 

L,(f,I,) = -(eoIK)’ 
\ 

LAfiII,) = -(edIf,“) 

Ldf,,,,H,,A = 0 I associated 
with K,, 

.uf,II,, H,,,,) = - (eo,, f,'fd')' 
LJf,,,,h,,,rH,,,,) = -(eo~h’K’) 

L,(f,d = Bed 

L,(~,II,,H,I,) = 0 

ufl112, H,II,) = 0 

LAfi,z,hm>Hm) = 0 

associated 
with K, 

(All) 

(Al.3 

(Al3) 

(A 14) 

(Al5) 

(A16) 

(Al7) 

(Al8) 

(A19) 

(A20) 

L,(O,H,,,) = -Pr,,(eo,ebI)’ 

I 

(A21) 

L,(O,H,II,) = -PG,(eoI18bII)’ a$;;ipf (A22) 
P* 

L,(O,O,H,,d = -Pr,,(eo,eo,r)” (A23 

L,(O,H,,,) = w(eoIebI)~ 

L,(O,H,,,,) = Pr,-,(%,,~b,,)’ 

L,(O,O,H,u,) = pr,-,(~OI~On~ ) 

(~24) 

as$F;d (A25) 
c 

(A26) 

L,(L) = K/2 (A27) 

L,(f,, R,II,) = Pr;,8;;11/2 + (Kfd’)‘P 

L,(O,~,,B,II,) = Prl,KI/2 I 

a;?p$d (A28) 
P 

(~29) 

with the associated boundary conditions: 

qS = 0: h = A = 1;’ = A’ = 0 (all i) 

(~):HI I) = H,IIj = H,II, = 0 

(i = l-3; j = l-8; k = 1,2) 

H 114 = 112 

(jI):H’,li = H;,,j = t7’,,,, = 0 

(i = 1,2; j = 1,2,5-8) 

H;[, = -H’,[, = H,,; 

Hi,,, = -Hi,,, = H,,,; H;,,, = -l/2 (A30) 

qS -t JI : fi’ = f = Hi = Ai = 0 (all i). (A31) 

The first-order relations between total enthalpy and 
temperature are: 

t?,ri = H,,,; i = l-3 

e,,, = H,,,-%/2 

(A32) 

(A33) 

fhi = H,,,,-h'f;,i: i = 1.2 
e ,II~ = H,II, 

e ,114 - - ~~~~~~~~~~~~~ 

e ,115 = H,II, -.cf,h, 

e 
I , 

1116 = H,II, -fofm 
0 ,117 = H,II, 

e ,118 = H,II, - 011P 82 

411, = A,,,, 

4112 = R,I,,--SdS;. 

(A34) 

(A35) 

(A36) 

(A37) 

(A38) 

(A39) 

(A40) 

(A41) 

(~42) 
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UNE APPROCHE ASYMPTOTIQUE DE L’ECOULEMENT COMPRESSIBLE DE COUCHE 
LIMITE 

Rbnm&Une approche par perturbation est appliquee pou; tenir compte de la variation des proprit%& 
On s’intkresse sptcialement & l’effet de la densite variable avec la pression. Dans le cadre d'une thkorie 
asymptotique,leseffetsdecompressibilitk. sontconsidkrkscomme des effetsdepropri&ksvariables. A l'aide 
de cette thkorie asymptotique, la deviation du frottement pa&al et du transfert de chaleur relativement 
aux valeurs du cas isotherme et incompressible est d&termin&e pour les couches limites laminaires de 
Falkner-Skan. Tant que l’on considere 1’8coulement laminaire, il n’y a pas besoin d’information empirique. 

EINE ASYMPTOTISCHE THEORIE FijR KOMPRESSIBLE 
GRENZSCHICHTSTROMUNGEN 

Zusammenfassung-Zur Erfassung des Einflusses variabler Stoffwerte wird eine regullre Stijrungsrechnung 
durchgefiihrt. Von besonderem Interesse ist dabei die Druckabhlngigkeit der Dichte. Im Rahmen einer 
asymptotischen Theorie werden Kompressibilitltsefkte als variable Stoffwert-Effekte betrachtet. Mit Hilfe 
der asymptotischen Theorie werden die Abweichungen der Schubspannungs- und WIirmeiibertragungs- 
ergebnisse von ihren inkompressiblen, isothermen Werten fiir laminare Falkner-Skan Striimungen 

hergeleitet. Fiir laminare Strijmungen bedarf es dafiir keinerlei emprischer Information. 

kiCIIOJIb30BAHHE ACHMl-ITOTkiYECKOTO METO& OIWCAHklR TEYEHHR 
CXkiMAEMOl-0 l-IOl-PAHHYHOI-0 CJIOX 

AsmoTamm-_Ann y9eTa 3+$eK~0B nepeMemiocTn CBO~TB wnonb30BaH MeTon perynapHblx a03Myme- 

H&iii. oco6brii EiHTepec npeACTaBJIKeT 3aBHCUMOCTb llJIOTHOCTU OT LIaBJIeHWI. B paMKaX aCWMnTOTWEC- 

KOk TeOpnI, BJIU,,HBe CXWMaeMOCTH paCCMaTpHBaeTCff KBK BJIWffHHe nepeMeHHOCTH CaOikTB. c 

TIOMOmbH) aCEiMn~OTW%CKOft TeOpHEI OnpeAeJIKeTCX OTKJlOHeHHe K03@HWieHTa nOBepXHOCTHOr0 

Tpemis u xapaxTepucTmc TennonepeHoca of CO~TB~T~TB~IO~E~X 3HaqeHwii ana necwihtaebroro usolep- 
MU'IeCKOrO JIaMEiHapHOrO nOrpaHH'IHOr0 C,,OIl @OJIKHepa<K3Ha. nOCKOJIbKy paCCMaTp&IBaeTCR JIaMH- 

HapHOe TeSeHHe,TO He B03HHKaeTHe06XOAIiMOCTb BCnOJlb30BaTb 3MlI~pWECKHeCOOTHOmeHLiK. 


