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Abstract—A regular perturbation approach is applied to take into account variable property effects. Of

special interest is the effect of the pressure-dependent density. In the framework of an asymptotic theory,

compressibility effects are considered as variable property effects. By means of this asymptotic theory the

deviation of skin friction and heat transfer results from their incompressible, isothermal values are

determined for laminar Falkner-Skan boundary layers. As far as laminar flow is concerned there is no need
for any empirical information.

1. INTRODUCTION

IN THE theory of compressible boundary layers one
should accommodate several complications not
present in the incompressible case: density should be
considered as a new variable that is pressure and
temperature dependent. An equation of state is needed
to relate thermodynamic properties. Momentum and
energy equations are coupled and nonlinear. Since
viscous heating may result in considerable
temperature gradients the temperature dependence of
transport and thermodynamic properties must be
taken into account. All these are far from trivial
matters, and hence there are very few exact solutions
for compressible viscous flows, see White [1] for a
survey of solutions including compressibility effects.

As far as boundary-layer flow is concerned the
purely numerical approach is straightforward taking
into account the dependence on pressure and
temperature of all physical properties involved in the
problem. The more analytical approach by so-called
compressibility transformations is, for practical
purposes, restricted to a narrow class of flows
exhibiting some kind of self similarity. The basic
objective of these transformations is to derive a set of
functions which relate a given compressible flow to a
corresponding incompressible flow; see, for example,
Stewartson [2]. In other words this method aims at
converting a variable property flow to a constant
property flow.

In contrast to this, the basic idea behind the present
study is to account for variable property effects, i.e.
compressibility effects, by a regular perturbation
procedure as described, for example, by Van Dyke [3].
The zero-order solution of this asymptotic approach is
the constant property incompressible flow. The linear
terms of a subsequent perturbation procedure can
cover compressibility effects to an extent that makes
an extension to higher-order terms unnecessary for
many practical applications.

The asymptotic approach to account for
compressibility effects is by no means restricted to
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laminar flow. Nevertheless for turbulent flows its
application is complicated considerably by the need
for turbulence modelling which itself is affected by
variable property effects. That is why only laminar
boundary-layer flow is considered in this study. The
basic ideas underlying its possible extension to
turbulent flows are given in ref. [4].

Within the theory of laminar boundary layers, self-
similar solutions are often taken as a starting point for
a more general investigation. Besides the fact that they
are of practical importance by themselves, like flat
plate and stagnation point flow they are often used asa
basis for general methods of calculation like integral
methods; see, for example, Walz [S]. In the
incompressible limit self-similar flows like the well-
known Falkner-Skan (wedge-type outer flow)
similarity solutions have a clear physical inter-
pretation. The momentum equation decoupled from
thermal effects in the incompressible limit after a
transformation of the normal coordinate is dependent
on one similarity coordinate only. If compressibility
and thermal effects are now taken intq account an
additional transformation of the streamwise
coordinate is necessary. As a consequence of this the
connection to the inviscid outer flow, given in the
original streamwise coordinate, is complicated
considerably.

This difficulty can be circumvented by the
asymptotic approach applied in this study. The
dependence on the streamwise coordinate of
compressibility and other variable property effects,
which will depend on the thermal boundary
conditions, can be taken into account by appropriate
streamwise-dependent factors in the perturbation
terms without need for a streamwise coordinate
transformation.

As mentioned earlier, considerable temperature
gradients may result from viscous heating. As a
consequence the temperature dependence of all
physical properties involved in a problem should be
taken into account. Therefore, it is reasonable to treat
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‘{ NOMENCLATURE
a velocity of sound Greek symbols
B constant, equation (6) o physical property
¢ skin friction coefficient B wedge angle, Fig. 1
I specific heat at constant pressure y ratio of heat capacities
e exponent: ¢ = 0 for T, = const; e heat transfer parameter, equation (2)
e = (1—m)/2 for g, = const E high speed parameter, equation (1a)
Ec Eckert number, u}?/c¥T* n viscosity
f dimensionless streamfunction #s similarity variable, equation (7) !
h enthalpy g dimensionless temperature !
H total enthalpy A thermal conductivity !
K, property of the fluid, equation (5) ¥ streamfunction ‘
Kp property of the density, equation {4b) p density
L reference length T shear stress.
m exponent, equation (6)
m, exponent, equation (19)
Ma Mach number, u*/a*
P pressure
P pressure coefficient, equation (4a) Subscripts
Pr Prandtl number, n*c}/i* o associated with the property a{p,y,...)
q heat flux aw adiabatic wall
r recovery factor, equation (25} cp constant property
| Re Reynolds number, p*u*L¥/n* € outer edge of the boundary
i T temperature w wall
; T, reference temperature o reference condition
f u velocity associated with heat transfer effects
IL X,y coordinates. II associated with high speed effects.

the problem by a double perturbation procedure with
one perturbation parameter for high speed
{compressibility) effects and one for heat transfer
effects.

The influence of the heat transfer parameter alone
has been investigated in the past in several studies; see,
for example Carey and Mollendorf [6] for natural
convection flows, and an extensive study by the
present author [7].

The extension to compressible flows is the main
object of this study. The procedure is demonstrated for
laminar Falkner—Skan-like boundary layers.

2. PERTURBATION PARAMETERS

Since physical properties are pressure and
temperature dependent, two perturbation parameters
are necessary to cover all variable property effects by a
perturbation procedure.

One (small) perturbation parameter, from now on
called the ‘high speed parameter’ is

u¥?

* *°
cpoTo

§= (1a)
Starred quantities are dimensional throughout this
study, the subscript ‘o’ refers to a reference state fixed

later. This parameter ¢ is the well-known Eckert
number E¢, an important parameter in connection

with viscous heating and pressure work. For perfect

gases it is related to the Mach number through
g = Ec, = (y~1)MaZ. (1b)

The other (small) perturbation parameter, called the
‘heat transfer parameter’ is

Tw*——'I;*

g = 7 for T, = const (2a)
(M
e=C, W for g, = const. (2b)

In equation (2b) a constant C; is introduced for
convenience with C, = [Re (m+ 1)/2]~¥/2, for m see
equation (6) below.

3. EXPANSION OF PHYSICAL PROPERTIES

The zero-order solution is the low speed
(incompressible) flow with vanishing heat transfer, i.e.
the constant property flow. Small deviations from this
flow are given by the linear perturbation terms in £ and
¢. As far as the physical properties are concerned this is
to take into account the linear terms of a Taylor series
expansion at the reference state T,, p,. For the density
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it reads:
p*
=0
= 1+eK,0,+&K,0,+K,P)+O0(e?, €&, &%) 3)
with
T=(T*-T¥)/T* = Ty + Ty = &by + &by (4a)
P = (p*—p¥)/p*ud’
and
* * *
K,= (Z—* :; *>°; K,= (q:T*%)o (4b)

being dimensionless properties of the fluid. The
dimensionless temperature T is split into two parts:
T, = ¢6; covering direct heat transfer effects; and
T, = &6y associated with the high speed parameter &
covering compressibility effects like viscous heating.
According to the two definitions of &, equations (2a)
and (2b), the temperature 6, is nondimensionalized by
0, = (T*-T*)/(T}—T*) for T,=const and 0, =
(T = T})/(C1 g L*/2%) for q,, = const.

The nondimensional  pressure is P=
(p* —p¥)/p*u*? as usually introduced in low speed
flows.

If all properties involved in the problem are now
expanded according to equation (3) dimensionless K-
numbers like K,,,K,,,K 1 -+. appear. But since the
pressure dependencies of the viscosity #, the thermal
conductivity A and the specific heat capacity c, are
extremely small they are neglected throughout this
study. It would be no problem at all to take them into
account. The only reason for neglecting all effects in
connection with K,, K, and K_ is that they are of no
practical interest. The series expansion for a general
property a (o = 5, 4,c,) thus is:

= 1+¢K 0, + &K, 0, + O(e?, &8, &%)

T* Oa*
K,={(— .
* (a* (?T"‘)0
If physical properties appear in a fixed combination

like pn they are treated like one single property with
K,,=K,+K,.

(5)

7
y *
— <
b

4. BASIC EQUATIONS AND
SOLUTION PROCEDURE

In this study the laminar boundary layer over a
wedge will be considered. The outer flow is given by
(e = outer edge):

u¥ = B*x*" 6)

with the exponent m related to the wedge angle 8 by
m = B/(2—p), see Fig. 1.

Prior to writing down the basic equations the
reference quantities must be fixed. Though self-similar
flows have no characteristic geometrical length the
equations are (formally) nondimensionalized by a
length I*. Temperature and pressure are referred to
their stagnation quantities T.* and p¥, the
characteristic values for compressible flows. But

instead of choosing /2c¥, T.* as the reference velocity
a characteristic quantity of the wedge-type outer flow
is preferred. The reference velocity u¥ is the outer flow
at a distance I* from x* = 0 so that u, = x™ and the
quantity B* drops out of the problem, see
equation (6).

With the similarity variable #,

+1 y
n= o X""‘””j pdy (7)
2 0
the dimensionless streamfunction f(x,7,)
Y*Rel? m+1 _ ..,
Iy 2 5" ®)

and the dimensionless variables according to Table 1,
the basic equations read:

Conf"Y +1f"+BLo./p— 1]
of’ J
2x I:f' f 1 f} o)

Tm+1 ox 0x
1 @H’ ,+fH' 2 7 0H o of
Pr,| ¢, Tm+1 0x Ox

—éx“[pf’f"(n—c . )} .0

The associated boundary conditions are:

0=p=-01988

Fi1G. 1. Wedge-type outer flow.
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Table 1. Dimensionless quantities

x y u v h H
x* Y e w P et h—hg H* - H3
rx o’ u¥ u¥ ° e Is* o T*
n,=0: f=f=0; H=H, for T, = const It should be emphasized that the original equations
11a)  (9) and (10) were partial, coupled and nonlinear but

H' = H,, for g, = const

H—x: f'=1=H=0. (11b)

The energy equation is written in terms of the total
enthalpy H(x,n,) = h+&u?/2. H* = H¥ is constant in
the inviscid outer flow so that the boundary condition
is H = 0 for 5, — cc. In the following H will be split
into two parts, H; and H;, according to 8, and 8y, [see
equation (4a)].

Equations (9) and (10) are a set of nonlinear coupled
partial differential equations. If the physical properties
are replaced by the Taylor series expansions,
equations (3) and (5), there are all together nine
parameters in the equations, namely: ¢, ¢, K ,, K,,, K,,
K,:. K., Pr, m. By an appropriate ansatz for the
dependent variables the number of parameters for the
solution procedure can be reduced drastically. With
the following ansatz seven parameters are separated
and only m [velocity exponent, see equation (6)] and
Pr (Prandtl number) are left over:

f= fo+sxe[Km,f1“ +Kpf112]
+5x2m[Kpr, Sim +Kpf1112 +Kp f1]

+0(e?, 8, 8%) (12)
H,=xH

+ex[K, Hyy + K Hyp + Ky Hys + KHypyl

+0(?) (13)

Hy = x"H +ex " 2" [K, H iy +KH i+ K H s

+KcH1n4+Kpﬁ1m]
+5x4m[quH1115 +K,Hyue+K,3Hyr
+K.Hyys +Izpﬁ1[12]

+0(e2, 8, 8%). (14)

The exponent e is introduced to distinguish between
the two kinds of thermal boundary conditions, namely
e = 0for T, = const and e = (1-m)/2 for q,, = const.
This parameter ¢ may be looked upon as the 10th
parameter of the problem [or the third parameter of
the solution procedure with equations (12)-(14)].

In equations (12)—(14) all functions f;, H; and Hy,
depend on 7, alone, i.e. they are solutions of ordinary
differential equations, typical for self-similar solutions.
Since f, H, and H; include powers of x they are called
‘quasi-self-similar’. The complete set of 22 ordinary
differential equations for f;, H;; and Hy; is derived in
ref. [4]. They are also listed in the Appendix.

that the equations for f;, H;; and Hy;; are ordinary,
uncoupled (in the sense that they can be solved
sequentially) and linear (except for the equation for the
zero-order streamfunction).

In addition to equations (9)—(14) and the property
expansions equations (3) and (5) a relation between
total enthalpy and temperature is required to close the
set of equations. This relation can be expressed
asymptotically, i.e. to the zero and first order,
respectively, taking into account that H = h+&u?/2
and dh=c,dT+[p~' —=T(@p~'/0T),1dp; see, for
example, Baehr [8]. But since the term expressing the
pressure dependence of the enthalpy h is extremely
small compared to the term ¢,dT it is neglected
throughout this study. It is the second non-asymptotic
approximation in this study. Again, like neglecting the
pressure dependence of , 4 and ¢, the motivation for
this approximation is that it is of no practical interest
to keep it asymptotically complete, although this
could be done. As far as a perfect gas is concerned it is
no approximation at all since p =1 —T(dp~1/8T) =0
and dh = ¢, dT is exact. Inserting the asymptotic
expansions for all variables one obtains simple
relations between H,;, H,; and 0,;, 8, respectively.
The zero-order relations are:

0y=H, and 6O;= Hoi—£52/2. (15)

The first-order relations are listed in the Appendix.
The numerical solution of the equations for f, H;; and
H,, is straightforward. In Table 2 results are given for
certain values of the parameters m and Pr (which may
be used for interpolation if different values are needed)
for the thermal boundary conditions T, = const and
q, = const.

5. SKIN FRICTION AND HEAT TRANSFER
RESULTS

The skin friction under the influence of variable
properties related to its constant property value is:

M 1+£xe|:Kp,,<00[+ jl,l,,1>+Kp “”2:|

+K,

Cy

o
ow

+ Exzm[Kp"<90,, +

+0(e2, 68, 82).

Ciep

"

1111

fu
o

"
1112 4

" + KP
o

fr —%]
v
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Table 2(a). Numerical results; 7;, = const

m= 0.0 1/3 2/3 1.0

Pr= 07 70 0.7 70 0.7 70 0.7 70
o 0.4696  0.4696 09277 09277 1.1203  1.1203 12326 12326
A —04139 —0.9135 —0.4705 —1.0930 —04873 —1.1491 —0.4959 —1.1784
- ~00340  0.6975 —0.0548  1.1597 —0.0643  1.3684 —00700 14921
T —0.3447 —04155 —0.5884 —0.7958 —0.6897 —0.8034 —0.7484 —0.8907
17 — — -0.3472 —02737 —0.4875 —0.2957 —0.5691 —0.3515
fi ~00370 —0.0326 —0.0564 —0.0294 —0.0648 —0.0299 —00699 —0.0305
11 — — —0.1673 —0.1800 —0.2207 —0.2394 —02502 —0.2724
T 0.1174  0.1174 02095  0.2095 02523 02523 02775 02775
" 0.0612  0.1859 0.0537  0.1837 0.0513  0.1831 0.0501  0.1825
AR — — 0.0353  0.0503 00437  0.0643 0.0476  0.0716
@13 02496  0.5449 0.2896  0.6590 0.3018  0.6950 0.3080  0.7138
0114 —0.0427 —0.0881 —0.0544 —0.1125 ~00581 —0.1204 —00601 —0.1246
0,14 0.0512 —0.0010 0.0989  0.0961 0.1221  0.1572 0.1361  0.1974
012 — — 0.0331 —0.0801 0.0444 —0.1563 0.0510 —0.2101
[ —0.0140 —0.6673 0.0028 —1.1282 0.0061 —1.3401 —00124 —1.4668
0114 0.0480 —0.0302 0.0520 —0.0315 0.0582 —0.0283 0.0824 —0.0233
&us —0.0153 —-0.1374 —0.0233 —0.1724 —~0.0267 —0.1888 —0.0287 —0.1992
16 — — 0.0061 —0.1759 0.0085 —0.2428 0.0098 —0.2804
) 0.0202  0.0259 00311 00301 0.0357  0.0321 0.0384  0.0335
6\ 11s —~0.0202. —0.0259 —0.0311 —0.0301 —00357 —0.0321 —00384 —0.0335
& —0.1035 —0.2284 —0.0850 —0.2031 —00781 —0.1933 -00746 —0.1882
B —0.0085 0.1744 —00117 02501 —00135 02915 —00147  0.3167

Table 2(b). Numerical results; g, = const

m= 0.0 1/3 2/3 1.0

Pr= 07 70 0.7 70 0.7 70 0.7 7.0
- 04969  0.4969 09277 09277 1.1203  1.1203 12326 12326
0,1 17421 0.7984 1.7208  0.7505 18577 0.7933 20167  0.8486
Oont —00821 0.7636 —00822  0.7651 —00822  0.7651 —00822  0.7652
S —0.5619 —0.3253 —10170 —0.5372 —1.2877 —0.6589 —1.5093 —0.7559
"y — — —0.5294 —0.1359 —0.8636 —0.2232 —1.1476 —0.2983
fi —0.0086 —0.3499 —0.0077 —0.5820 —0.0069 —0.6865 —0.0065 —0.7484
Sl — — —0.1442 —0.3069 —0.1900 —0.4113 —0.2153 —0.4694
I 0.1174  0.1174 02095  0.2095 02523 02523 02775 02775
6,1, 04074  0.1230 0.3412 00935 0.3684  0.0999 04106  0.1116
s — — 0.1927 00227 02912 0.0332 0.3907  0.0438
0,13 —0.1810 —0.2502 —1.1253 —0.2198 —~ 13060 —0.2465 —1.5405 —0.2839
014 —-0.3365 —0.0685 —0.3553 —0.0618 —0.4195 —0.0682 —04930 —0.0762
6,11y 0.1236  0.2346 0.1947 02242 02440 02518 02877  0.2820
0,112 — — 0.0669  0.0233 0.0812 —0.0002 0.0933 —0.0239
0113 0.0477 —0.4507 —0.0076 —0.4273 —0.0425 —0.4520 —~00728 —0.4883
0114 0.0953 —0.1590 0.1498 —0.1469 0.1952 —0.1550 02386 —0.1610
O,us —0.0460 —0.0325 —00384  0.0276 —00369  0.0380 —00363  0.0422
LTl — — 0.0041 —0.0859 0.0048 —0.1015 0.0051 —0.1081
8114 0.0500 —0.1817 0.0414 —0.1893 0.0397 —0.1907 0.0390 —0.1913
8, 11s —00534 —0.1098 -0.0448 —0.1034 —00431 —0.1020 ~00424 —0.1015
8y 04355  0.1996 04030  0.1764 04029  0.1733 0.4103  0.1744
R 0.0 0.0 0.0 0.0 0.0 —0.0001 00 —0.0001

The heat transfer results are:

For T, = const in terms of q,,: +eex T2 [K ,, 011 + K, 01,
Re ~1/2 + K1 (0o 01+ 01113) + K O 11
-4, °(m+1)xm“l] s Ly
2 +Kp(01111 “Eeol)Jw
= (pA), T, = exOy, +5x2m0¢’allw +&2x [KpngllIIS + Kp 01116 +Kp). e
+£2x29[K‘,,’ O +K00’112 +K 0y + KP(H_IIHZ _Jio;ll)]w
+ K 300,05+ 0113) + K 01141, +0(e3, 6%, e82, 8%). (17)
p
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For g, = const in terms of T, :
T, = exOgyy +8x7™0,y,,
+52X2&{Kpn3111 +K, 0012+ K003+ Keby14]
+e8x T [K 010y + K012 +K 10111
+K 0514+ K, 011
+‘§2x4m[Kpn01115+Kp01116+Kﬂ101117
+K 0,5 + K, 01112]
(18)

The leading terms in equations (17) and (18)
expressing the constant property results, are of order ¢
and g, respectively. Since the heat transfer quantities g,,
and T, are one order of magnitude smaller than the
momentum transfer quantity ¢; constant property
results are not those withe = £ = 0 (then T, = ¢, = 0)
but ¢ » 0 and £ —» 0. That is why temperature results
for the thermal boundary condition T, = const are
usually nondimensionalized by T} —T* =¢T}*, a
quantity of order O(e), leading to 6; = (T;* — T,*)/
(T.* — T.*) of order O(1).

+0(e3, %, 8%, £%).

6. EMPIRICAL METHODS IN THE LIGHT OF
THE ASYMPTOTIC RESULTS

Since compressible flow is treated like a variable
property flow in this study, the question arises if
empirical methods—well established in the field of
variable property flows—are also applicable to
compressible flows. There are two well-known
empirical methods for variable property effects.

In the property ratio method the constant property
results are multiplied by a power of some pertinent
property evaluated at the surface temperature to that
property at the reference temperature T.*.

A complete formula for the skin friction for example
reads:

Cr

— MMy .
7_pw0}’lw'l’

m, = const, m, = const.
Cfcp

(19)
In the reference temperature method a temperature T,*
is specified at which the properties appearing in the
dimensionless groups of the problem should be
evaluated to obtain the variable property results by
constant property formulae.

By means of the linear asymptotic theory the
unknowns in both methods (the exponents m,, m, and
the reference temperature, respectively) can be derived
analytically, for details of the procedure, see ref. [7].

So a first statement is that it is a characteristic
feature of these formulae that higher-order (nonlinear)
effects cannot be taken into account, they are linear
methods by nature.

The second statement concerns the applicability to
compressible flow. In the general case there are two
independent effects of variable density. One is related
to dp*/0T* and one to dp*/dp*. Aslong as both effects
are in a problem they cannot be covered by one

exponent or one reference temperature. As a
consequence property ratio and reference methods are
applicable only in cases where there is no effect of
Op*/dp*, i.e. for the flat plate and stagnation point
flow. An extension to general wedge type flows is not
possible.

Flat plate flow

Applying the property ratio concept the correction
formula for skin friction for example is (since p and 5
appear in a fixed combination only they can be treated

like one property):

Cy
— = (pun,)""
cfcp

= 1+m,, K, (ex0,, +&0,,,) +O0(e?,¢8,%). (20)

Comparing equations (20) and (16) for T, = const
leads to the following expressions for the exponent m,,

0 1.0 —_ N L, _ M.
Wotw = 1, Ugliw — V5, € = V).
My = My +— My 21
with
”
=1 111w
mpr]l - fu
JOW
" K
_J1llw £ ¢ Fr 1 "
Mpp2 = ” + ( lw_Z)/fow'
ow o

The first part,m,,, , is the exponent for incompressible
(low speed) flow, m,,, is the deviation caused by
viscous heating, the only high speed effect for a flat
plate flow. The expression for m,,, is simplified when
the free-stream quantities T*, p* instead of the
stagnation values T*, p¥ are taken as reference state.
Then m,,, is free of K-numbers and both parts, m,,,
and m,,, are functions of the Prandtl number only,
since f;;, depend on Pr. For the special case of the flat
plate with free-stream reference conditions their
numerical values are given in ref. [7] or can be
extracted from Table 2(a) by taking into account the
change in the reference state properly.

From these considerations it is concluded that the
free-stream values are the adequate reference state for
the flat plate flow rather than stagnation values which
nevertheless are used in general for uniqueness.

Applying the reference temperature concept, T.* may
be written as

= _ a, +a,Ma+a L (perfect gas). (22)
N 2Mdae +as T+ p gas).
In this form the reference temperature can be
compared to empirical results listed in ref. [1]. The
range of empirical data for Pr = 0.7 is:

a, =042-0.55 (exact: a, = 0.468)
a, = 0.032-0.039 (exact: a, = 0.031)
a; =045-0.58 (exact: a; = 0.532).

The numbers of the linear asymptotic theory are listed



An asymptotic approach to compressible boundary-layer flow 65

in parentheses so that ‘exact’ precisely means ‘exact
within the linear theory’—but that is all that can be
covered by the reference temperature as was
mentioned before.

Stagnation point flow

For the stagnation point the general results,
equations (16)-(18) reduce drastically. With e =0,
x = 0 the only higher-order terms that are left over are
those of order O(g). No high speed effect expressed by &
and K o 18 left since it is a low speed flow by nature. The
only variable property effects are those of heat
transfer, the correction formulae are those of low
speed stagnation point flow with heat transfer. The
skin friction formula after the property ratio method
for example is:

Cc—’ = (put) "l

fep
= 1+m,,eK, 0, +m,eK, 0, +0(?). (23)
Comparison with equation (16) yields:
m. = 1+ 111w" T 112w” . (24)
o Oolw ft‘)w ° 901w ow

In contrast to equation (20) an additional factor pj»
should be introduced for a complete correction
formula since p does not always appear in the fixed
combination py as in the flat plate flow. In equation
(24) either the numerical values from Table 2(a)
(T, = const, boundary condition 6, = 1) or those
from Table 2(b) can be inserted since for stagnation
point flow g, = const implies 7, = const and vice
versa.

By virtue of the so-called Mangler transformation,
see ref. [1], the solution for m=1/3 (= 1/2)
corresponds to the axisymmetric stagnation point
flow. The only formal difference is that the RHS of

equation (7) is multiplied by \/5 in the case of
axisymmetric flow with the consequence that in
equation (17) the RHS must be multiplied by the same

factor \/5 .

7. EXACT SOLUTIONS AND
ASYMPTOTIC RESULTS

The deviations of the linear asymptotic results from
those that take into account the variable properties
completely are of order O(e?, ez, &%) asymptotically.
But for practical purposes the linear theory is a good
approximation, even for values of ¢ and £ not very
close to zero, as will be demonstrated by the following
examples.

Zero pressure gradient

In Fig. 2 the exact solution for skin friction of a
perfect gas by Van Driest [9] is compared to the linear
theory of this study. Figure 2 shows a good
coincidence up to high speed parameters ¢ of about 10
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F1G. 2. Flat plate flow: T, = const; Pr = 0.75; Sutherland
law. —— Van Driest [9]; —— linear theory.

and heat transfer parameters of about one. In the light
of an asymptotic theory for (g, £) — 0 this result is quite
amazing. But one should keep in mind that the only
high speed effect is viscous heating and that the
temperature effects on p and # mostly compensate
each other. Both properties appear only in the fixed
combination py, no term with p alone appears for
f = 0 (flat plate) as can be seen in equation (9). The
compensation to the first order between p and # is
expressed by a small value for K,,. In the example of
Fig. 2itis K, = K,+K, = —1+0.788 = —0.212.
An interesting feature of adiabatic flow is the
adiabatic wall temperature T.¥ and the recovery factor
r defined by
oy -T*
= Tacr (25)
For the adiabatic case g, is zero, i.e. ¢ =0. The
dimensionless temperature &0y, is then (T} — T.*)/T*
so that the recovery factor reads (u* = u* for the flat
plate):
LT 2<7§$—7;*

r=2 == +
u¥?fcr, &\ T T*

e

*
ck,

T* — 7;*) c*

= (1 +200H)+25|:Kpn91115 + K011

Holl 1 > A -2
+K, 91115—7‘§ +K,012 [+O(E"). (26)

For Pr =1 for example, with the numerical values
from Table 2(b), the well-known result r = 1 follows
which even holds for compressible flow as far as the
zero-order results are concerned. The first-order
deviations from this constant are weak since all 6,
are small numbers in the vicinity of Pr = 1 as can be
seen in Table 2(b).

Non-zero pressure gradient

For the special case of a perfect gas with the
Sutherland viscosity law and for Pr = 1, Cohen and
Reshotko [10] treated the problem by a
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FiG. 3(b). Falkner-Skan: m =2/3; T, =const; Pr= 1.0;
x = 1.0. og Cohen and Reshotko [10]; —— linear theory.

compressibility transformation technique described in
the introduction of this study. They solved the
problem for an external velocity U, = CX ™ and a heat
transfer parameter similar to ¢, see equation (2). The
quantities U, and X are transformed variables with the
consequence that the prescribed external flow in
original physical variables is of power law type only
for Ma = 0. The Mach number dependence of the
problem is hidden in the transformation and not
explicit as in the asymptotic approach.

To compare the results from ref. [10] with the
power law external velocity results of this study, a
local correspondence between the power / from ref.
[10] and m according to equation (6) is assumed. This
again is a non-asymptotic approximation which is
necessary to compare the results of the two theories.
For the two cases, m = 1/3 and m = 2/3 and a fixed
location x = 1 (all other values are possible), the two
theories are compared in Figs. 3(a) and (b). There is a
satisfactory coincidence for rather large values of the
heat transfer parameter ¢ as well as for the high speed
parameter &.

8. DISCUSSION

There are three important features of the asymptotic

approach to compressible flow that should be
emphasized:

(1) The typical advantage of a perturbation technique
holds: the results are general in the sense that a
specification to certain flow cases is made in the
results only (by specifying ¢,z and the fluid
through K. K, .. .).

(2) An additional advantage is that the influence of

the physical properties can be checked separately.

This statement applies especially to ‘compressi-

bility effects’ (associated with ¢ and K,,

respectively) in contrast to the alternative method

of hiding it in compressibility transformations.

As far as laminar flow is concerned all information

is extracted from the basic equations. Based on

these results well-known empirical methods to
account for variable property effects can be

understood as theoretical methods (see Section 6).

—
(8]
—

Finally the question may be answered that really
was the starting point for this study: what is a
compressible flow?

The most general answer is: a flow with non-
constant density, i.e. variations either through dp/0p
or Jp/0T are involved in the problem. Due to this
definition the flat plate flow at Ma # 0 and stagnation
point flow with heat transfer are compressible flows
since variations in density are present through dp/dT.
The same argument holds for every flow with Ma =0
but non-zero heat transfer. It is suggested that this
definition of compressibility be called compressibility
in a general sense.

A more restrictive answer is: a flow with non-
constant density through the effect of dp/dp. A
necessary condition for this is high speed, i.e. Ma # 0.
This definition may be called compressibility in an
aerodynamic sense, since it is typical for aerodynamic
high speed flow situations. But it should be kept in
mind that high speed is necessary but not sufficient.
The boundary layer at a flat plate, even at supersonic
Mach numbers, is incompressible in that sense since
the pressure is constant in this case and variations in
density occur through 8p/@T (viscous heating) only.
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APPENDIX

After inserting equations (12)-(14) and the property
expansions into the basic equations (9) and (10) two sets of
ordinary differentiai equations are obtained which are the
2ero- and first-order equations with respect to ¢ and &,

respectively.
For convenience the following differential operators are
introduced:
2e )
L1<f>=f"'+ﬁ,f"—(2ﬂ+ )ﬁ,f
m+1
2e
1+— 5 Al
= (A1)
L()=f"+ LS —4B [+ @B+ 1)ff  (A2)
H” 4e 2e
Ly(f:H) = 5t fiH = {H == ['Hq
<1 +— ) SHy (A3)
H” ! t ! ’
L{fH) =5+ foH —4BfoH —2Bf Hon
1
+@B+1)fHan —(ﬁ - 1>(fy:;)" (Ad)

”

H 2e
L LH —(2/3 +—> SH=2Bf Hoy
7o m+1

Ls(f.9.H) =

2e 2e ,
- g'Hq+ m—_+1>fHon

m+1 +1
1
QB+ 1)gH Y (P*- 1) Ry (AS)

With L,-Ls the momentum and energy equations are:

zero order with respect to ¢ and &:

B OB —f7) =0 (A6)
4
o 2 fHo =0 (A7)
o 1
"+ﬁ, o 2ﬂf;'Hou=<P——1)w 7Y (A8)
ro

with the associated boundary conditions [(«): T,, = const,
(#): qw = const]:
ns=0: fo=f=0;(@):Hy—-1=H,;=0;
B:Hu+1=Hy=0
N, 00 fg—1=Hy=Hoy=0

{A9)

(A10)

first order with respect to ¢ and &:

Li(fin)= —0a f5) (All)
Lyfin) = — O &Y (A12)
Ly(fin,Hiy) =0 a:/si(t)i??(ted (A13)
Ly(fini-Hyus) = —Ou 1Y " (A14)
Ls(fin, fing, Him) = = Oa 6157 (A15)
Li{(fi1z) = B0y (A16)
Ly(finz2) = BOon + 1/2) (A17)
Ly(fi12. Hy1) =0 afj;:ﬁiaéed (A18)
L(fina, Hyug) = " (A19)
Lefirs fina, Hin) =0 {A20)
Ly(0,Hy13) = — Prg (061001 (A21)
L0, Hywr) = —Pr (O fon) 1 el (a2
L5(0,0,H,113) = —Prg *(Bo1Oom)” j (A23)
L;(0,H,1,) = Pry ' (665 \ (A24)
L0, Hyuis) = Pri (OonOon) J Benacd29)
Ls(0,0, H:Iu) = Prg (6.1 60n)” (A26)
L) =" (A27)
L., Hmz) = Pr;‘oz;u/2+(ﬁ; 22 ajjg;"*}gid (A28)
Ly, fy, H uy) = Pry*0/2 (A29)

with the associated boundary conditions:

=0 fi=f=f=F=0 Gl
{@):H;;=Hyy;=H, =90
i=13;j=18k=12)
Hi,=1/2
(B):Hy,; = Hyyy = Hinp =0
(i=1,2;j=1,258)
y13= —Hia = Hop;
Hiyy= —Hijjga=Hoy; Him = —1/2
s ff=Ff=H=H=0 (alli).

(A30)
(A31)

The first-order relations between total enthalpy and
temperature are:

Oy =Hyy; i=1-3 (A32)
B11s = H 1y~ 03/2 (A33)
O =Hyi— fofins =12 (A34)
61us = Hyns (A35)
61114 = Hy1a = or fonr (A36)
Oyus = Hyns— fo fim (A37)
0116 = Hyng — /o fiuz (A38)
0in; = Hiny (A39)
O1us = H s —03u/2 (A40)
Oy = Hymy (Ad1)
O =Hima - L1} (A42)
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UNE APPROCHE ASYMPTOTIQUE DE L’ECOULEMENT COMPRESSIBLE DE COUCHE
LIMITE

Résumé—Une approche par perturbation est appliquée pour tenir compte de la variation des propriétés.
On s’intéresse spécialement 4 'effet de la densité variable avec la pression. Dans le cadre d’une théorie
asymptotique, les effets de compressibilité sont considérés comme des effets de propriétés variables. A I'aide
de cette théorie asymptotique, la déviation du frottement pariétal et du transfert de chaleur relativement
aux valeurs du cas isotherme et incompressible est déterminée pour les couches limites laminaires de
Falkner-Skan. Tant que I’on considére I’écoulement laminaire, il n’y a pas besoin d’information empirique.

EINE ASYMPTOTISCHE THEORIE FUR KOMPRESSIBLE
GRENZSCHICHTSTROMUNGEN

Zusammenfassung—Zur Erfassung des Einflusses variabler Stoffwerte wird eine regulire Stérungsrechnung
durchgefithrt. Von besonderem Interesse ist dabei die Druckabhingigkeit der Dichte. Im Rahmen einer
asymptotischen Theorie werden Kompressibilitatseffekte als variable Stoffwert-Effekte betrachtet. Mit Hilfe
der asymptotischen Theorie werden die Abweichungen der Schubspannungs- und Warmeiibertragungs-
ergebnisse von ihren inkompressiblen, isothermen Werten fiir laminare Falkner-Skan Stromungen
hergeleitet. Fiir laminare Stromungen bedarf es dafiir keinerlei emprischer Information.

HCTIOJIb30OBAHUE ACUMIITOTHYECKOI'O METOJA OIMTUCAHUA TEYEHHWS
CXHUMAEMOTI'O IMTOTPAHUYHOI'O CJIOA

Annoraums—/119 yueTa 3¢eKTOB MepEMEHHOCTH CBOMCTB HCIOAb30BaH METOM PETYJSAPHBIX BO3MYIlIE-
uuif. OcoOblit MHTEpeC MPeaCTaBAeT 3aBHCHMOCTD IUIOTHOCTH OT AaBiieHud. B paMkax acuMoToTHuec-
KO TeOpHH BIMSHHE CKMMAaeMOCTH DPacCMAaTpMBAETCAd KaK BIMAHHE NepeMeHHocTH cpolicts. C
NOMOLIBIO ACHMNTOTHYECKOH TEODHH ONpEIENACTCS OTKJIOHCHHe KO3hGHIUMEHTa MOBEPXHOCTHOTO
TPEHHSl U XAPAKTEPUCTHK TEIUIOMEPEHOCa OT COOTBETCTBYIOIUMX 3HAYECHMI [UIA HECKHMAEMOTO H30TEp-
MHYECKOTO JIAMAHAPHOFO morpanuuHoro cios ®omkHepa—CxaHa. ITockonbKy paccMaTpHBAeTCA JaMH-
HapHOE Te4eHUe, TO He BO3HAKAET HEOOXOANMOCTD UCIOJIb30BATE SIMIUPHUECKHE COOTHOUICHHA.



